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1. INTRODUCTION

The problem of real-time available bandwidth (ABW) estimation in various telecommunication
channels [1–4] is highly relevant for its results to be further used in

— computer network management systems to control the efficiency of network resources utiliza-
tion,

— congestion control algorithms of the transport protocols,
— multimedia information streaming systems,
— algorithms for resource allocation of software defined networks, etc.

The way ABW and related numerical indicators are understood varies in different publications
and may imply

— maximum residual capacity of the given channel at the current load by external flows,
— maximum data transmission rate (throughput) through the channel ensured using some fixed

protocol (UDP, TCP, etc.) at the current load by external flows,
— maximum rate of useful data transmission (goodput) through the channel at the current load

ensured using the selected protocol under additional requirements to the quality of service
(QoS) such as maximum permissible delay, jitter, packet loss ratio, etc.

Currently, there is a whole palette of hardware and software tools for solving this problem.
In terms of the statistical information involved, they are divided into active and passive. Active
ones use additional service traffic, which is a sequence of small packets, possibly of variable size.
The difference between the packets sent and received, including the gaps between them, serve
as the basis for calculating the current ABW value. In passive tools, this value is calculated
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546 BORISOV

on the basis of information about the real current traffic in the given channel collected with the
help of operating systems tools (such as the tcpdump utility). We should separately mention the
ABW estimation tools based on channel models constructed mainly on queuing systems. It applies
simulation modeling rather than real statistical information.

Processing of real data for ABW estimation relies on relatively simple probabilistic models,
in particular, linear stochastic observation systems. These are the ones that allow applying the
classical Kalman filter [5–7]. At present, the theory of state estimation of stochastic dynamic
systems is sufficiently developed, within its framework one can select a model more similar to the
operation of a network channel and construct a numerically efficient algorithm for it that estimates
the state of the system based on the available data.

This work deals with using the mathematical framework of Markov jump processes (MJP)
to construct mathematical models of packet data transmission channels. They are designed to
solve the problem of real-time estimation of channel characteristics responsible for ABW from
heterogeneous statistical information. The paper has the following structure. Section 2 introduces
the class of network channels and transmitted data flows under study and the structure of available
observations. The section presents arguments in favor of using the MJP concept to describe the
evolution of channel characteristics.

Section 3 contains the theoretical framework for solving the applied ABW monitoring problem.
Section 3.1 introduces the observation system under study. Its hidden state to be estimated is
a homogeneous MJP with a finite set of states. Some of the observational components are MJP
functions recorded without noise while some are Cox processes whose intensity depends on the
state. The problem of filtering the MJP state using the available observations is proposed to be
considered as a theoretical basis for solving the applied monitoring problem. Section 3.2 deals with
solving it. The sought filtering estimate is described by a system of connected ordinary differential
equations and recurrence relations.

Note that the proposed optimal filtering problem solved in this work differs from the problems
studied in classical monographs [8–10]. In the mentioned works, the structure of observations is
such that they can be transformed to a set of Wiener and Poisson processes by a suitable change
of the probability measure. In that case, the obtained equations could be interpreted to some
extent as different versions of the Kallianpur–Striebel formula [11]. This transition is possible if the
condition of nondegeneracy of martingales in observations is fulfilled. By contrast, in the proposed
stochastic system, however, some of the observations do not contain noise at all, which makes it
impossible to apply the Girsanov transformation of the measure. At the same time, the equations
describing the optimal filtering estimate can be treated as a special case of the abstract formula
for the optimal filtering of a semimartingale given the observation of semimartingale [12].

Section 4 contains an illustrative example of solving the ABW channel monitoring problem. The
channel processes two independent packet flows. The first one is described by a Poisson process with
the known intensity. The second hidden flow is described by a Cox process whose intensity varies
according to some MJP. The observations include the number of packets from the first flow present
in the channel and the sequence of the packets lost from this flow due to congestion. The channel
itself is a simple exponential service element with the known intensity combined with a pool of
packets of the known capacity. Packets from the pool are randomly selected for transmission. The
current ABW depends on its occupancy rate and the intensity of packets arriving from the second
flow, so these are the characteristics that are proposed to be estimated. Since no service packet
flows are used to obtain statistical information, the proposed monitoring algorithm is categorized
as passive. The numerical experiment presented in the section illustrates the high quality of the
proposed estimates.

Section 5 presents the analysis of the obtained results and directions for further research.
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2. STATEMENT OF THE APPLIED PROBLEM
OF AVAILABLE BANDWIDTH MONITORING

We describe the functioning of a network channel of packet data transmission in the form of a
controlled stochastic observation system. The channel ensures data transmission of several data
flows described by individual characteristics such as

— the intensity of packet arrival from the flow,

— the size of individual packets,

— the total amount of transmitted data,

— the data transmission control protocol, etc.

The channel itself is a set of telecommunication equipment and transmission lines characterized
by

— the number of channel hops and their characteristics,

— characteristics of individual network devices (capacity, buffer sizes, internal software charac-
teristics), etc.

Ideally, the channel state is a “snapshot” of the location and movement of the various target
and service packets in all parts that make up the given channel, as well as all input and output
packet flows, including lost packets.

The channel ABW estimation problem is to determine the maximum packet data flow that
could be transmitted through the channel given its current load. In this statement, the problem is
unlikely to have an exhaustive solution due to the following facts.

(1) Determining the maximum data flow that can be additionally transmitted through the
channel in its current state depends on a number of additional characteristics such as the type
of additional data (the protocol type), reliability of data transmission, etc. The point is that
the additional bandwidth must be calculated taking into account all overheads and redundancy,
including the transmission of service packets, retransmission of lost data and so on. For example,
the bandwidth for the subsequent use of UDP traffic will be higher than for TCP since the latter
involves resending packets which are not confirmed by the reciever via a special acknowledgement
flow.

(2) The channel state mentioned above must have a huge dimension that prevents it from being
used in any practical estimation tasks.

(3) The channel characteristics contain uncertainties of different nature, viz.

— the parameters of the individual transmission hops, which form the channel, are usually
unknown,

— characteristics of communication devices (their transmission speed,, buffer/storage size) are
partially or completely unknown,

— the firmware of the communication devices is proprietary with unknown performance and
implemented algorithms,

— network channelling equipment may be simultaneously used by several channels, entailing
additional uncertainty of its performance.

(4) Data flows transmitted by the channel also have properties that negatively affect the quality
and the very possibility of solving the ABW monitoring problem as they are nonstationary, contain
a priori uncertainty in their characteristics, and are partially or completely unobservable due to
information security and access sharing restrictions.

In addition, the model is bulky for solving the mentioned practical problem. For this purpose,
it is sufficient to consider only the “bottle neck” of the channel, viz. the section with the lowest
performance. At the same time, relatively simple queuing systems consisting of service elements,
queues or temporary packet storage buffers can be used to describe its operation.
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Packet flows can be described by generalized renewal processes [13] — the latter both represent
random event flows and may contain some additional packet header information important for
subsequent estimation of the channel characteristics. Generally speaking, statistical information
available for passive ABW monitoring can include

— part of input information flows,
— part of packet loss flows arising due to various reasons,
— part of service flows such as acknowledgements,
— characteristics of buffer occupancy with packets of the observable flows,
— additional numerical characteristics of individual packets of observable flows, (individual num-

bers, packet sending/receiving timestamps, etc.).

The state of the communication channel should determine the pair “bottleneck state — total
load of the channel”. In their mathematical nature, the available observations can also be divided
into two different categories, viz. counting processes with their intensity depending on the system
state and some functions of the system state observed without additional noise.

As mentioned above, the ABW of a real channel depends on the type of additional load; however,
in any case, it will be described by some function of the system state—the current total intensity
of packet flows entering the channel and the degree of the channel occupancy. These are the ones
that are proposed to be estimated using the available statistical information and then recalculated
into ABW of the added flow of some type.

The additional assumption of the Markov property of the observation system under study is
certainly a limitation. Nevertheless, it does not appear to be excessive. First, semi-Markov systems
(Markov recovery processes) can be reduced to such systems by a suitable extension of the state
vector [14–16]. Second, a wide class of non-Markov systems can be approximated using Markov
systems [17]. Third, the mathematical framework of Markov processes supported by the theory of
martingales allows us to solve a wide class of optimal state and parameter estimation problems.
All these conclusions explain the subsequent choice of stochastic differential observation systems
class describing the channel state and its filtering.

3. OPTIMAL FILTERING PROBLEM FOR THE STATE OF A MARKOV JUMP PROCESS
BY A SET OF NOISELESS AND COUNTING OBSERVATIONS

In what follows, we use the following designations.

— IA(x) is the indicator function of the set A,
— S

N = {e1, . . . , eN} is the set of coordinate unit vectors in R
N ,

— col(a1, . . . , aN ) is the column vector composed of the components an, n = 1, N ,
— diag(a) – is a diagonal matrix with the vector a as the diagonal,
— a ∧ b � min(a, b).

3.1. Statement of the Filtering Problem

On the complete probability space with filtration (Ω,F ,P, {Ft}t�0) we consider the observation
system

θt = θ0 +

t∫
0

A�θsds +Mθ
t , θ0 ∼ π0, (1)

ξt = Cθt, (2)

ηt =

t∫
0

Gθsds+Mη
t , (3)
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where

— θt = col(θ1t , . . . , θ
N
t ) ∈ S

N is an unobservable system state representing the Ft-adapted homo-
geneous MJP with the values in S

N , the transition intensity matrix (TIM) A, and the initial

distribution π0; M
θ
t = col(Mθ,1

t , . . . ,Mθ,N
t ) is an Ft-adapted martingale,

— ξt = col(ξ1t , . . . , ξ
M
t ) ∈ R

M is a noiseless (perfect) observation process; C ∈ R
M×N is the ob-

servation plan matrix with the columns cn, n = 1, N ;
— ηt = col(η1t , . . . , η

K
t ) ∈ R

K is an observable process with counting components: the matrix
G ∈ R

K×N determines conditional jump intensities of individual components η depending on
the current state θ (G consists of the rows gk, k = 1,K); Mη

t = col(Mη,1
t , . . . ,Mη,K

t ) – is an
Ft-adapted martingale.

Suppose Ot � σ{ξs, ηs : 0 � s � t} be the natural flow of σ-algebras generated by observable
processes. The optimal filtering problem for the state θt is to calculate the conditional mathematical
expectation (CME) θ̂t � E {θt|Ot}, t ∈ [0, T ]; T < ∞ is some finite deterministic instant.

We assume that the considered probability triplet with filtration and the observation system
satisfy the following conditions.

A) Ft ≡ σ{θs, ηs : 0 � s � t} for ∀ t ∈ [0, T ].

B) The martingale components Mη,k
t of the counting observations ηkt are strongly orthogonal to

each other and also orthogonal to the martingale Mθ
t in MJP θt:

〈η, η〉t =
t∫

0

diag(Gθs)ds, 〈η, θ〉t ≡ 0.

C) Let {τj}j∈Z+ be the instants of jumps in the block process (θt, ηt), and {ζj}j∈Z+ be the

instants of observation jumps (ξt, ηt), τ0 = ζ0 � 0. We assume that

lim
j→+∞

τj = lim
j→+∞

ζj = +∞ P− a.s.

Then, Markov points τ ′j � τj ∧ T and ζ ′j � ζj ∧ T will be bounded by the constant T . In what
follows, the primes in the designations of the Markov points are omitted for simplicity.

The intensity matrix G of counting observations can be an arbitrary matrix of a suitable di-
mension consisting of non-negative elements. There are no such restrictions on the matrix of exact
observations C, and it only has to have a suitable dimension. Nevertheless, in practice, the matrix
C consists of 0 and 1. Often, noiseless observations ξt are represented by information about what
some set S

′ ⊂ S
N contains at the current instant θt. In this case, the respective row of C will

consist of the indicators IS′(en), n = 1, N .

3.2. Solving the Filtering Problem

Let C be the set of different columns of the matrix C. We construct the mapping Ξ : C → R
1×N

as follows:
Ξ(c) �

∑
n: Cen=c

e�n .

Ξ(·) characterizes the complete preimage of the mapping e → Ce in the following sense:

diag(Ξ(c))e =

{
e, if Ce = c,
0 otherwise.

We denote: θ � θζ� , ξ � ξζ� , η � ηζ� . We consider a non-decreasing sequence of σ-algebras
Oj � σ{ζ, ξ, η : 0 � � � j}. It is known [19] that Oj ≡ Oζj for all j ∈ Z+.
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We also construct families of σ-algebras

Oj,t � σ{A ∈ Oj, {ω : t ∈ [ζj(ω), ζj+1(ω))}}.

Obviously, the σ-algebras Oj,t are richer than Oj , as they are augmented with random events of the
form {ω ∈ Ω : ζj(ω) � t < ζj+1(ω)}, which carry the following meaning: there have been exactly j
jumps of observations by the instant t.

To derive optimal filtering equations, the following auxiliary propositions are required.

Lemma 1. Suppose π̂j � E
{
θζj |Oj

}
. Then P-a.s. the following equalities are true

I[ζj,+∞)(t)E
{
θtI[ζj ,ζj+1)(t)|Oj

}
= I[ζj ,+∞)(t)mt, (4)

I[ζj,ζj+1)(t)E {θt|Oj,t} = I[ζj ,ζj+1)(t)μt, (5)

where the functions mt and

μt = (1mt)
−1mt (6)

are the solutions to the following systems of ordinary differential equations:⎧⎪⎪⎨⎪⎪⎩
ṁt =

[
diag(Ξ(ξj))A

� −
K∑
k=1

diag(gk)

]
mt, t > ζj ,

mζj = π̂j ,

(7)

⎧⎪⎨⎪⎩ μ̇t =

[
diag(Ξ(ξj))A

� −
K∑
k=1

diag(gk)

]
μt − μt

[
Ξ(ξj)A

� −
K∑
k=1

gk
]
μt, t > ζj ,

μζj = π̂j.

(8)

Proof of Lemma 1 is given in Appendix.

Lemma 2. The estimate π̂j+1 � E
{
θζj+1

|Oj+1

}
is specified by the formula

π̂j+1 =
K∑
k=1

(
gkμζj+1

)−1
diag(gk)μζj+1

(ηkj+1 − ηkj )

+
(
Ξ(ξj+1)A

�μζj+1

)−1
diag

(
Ξ(ξj+1)

) (
I − diag

(
Ξ(ξj)

))
A�μζj+1

,

(9)

where the vector μζj+1
is the solution to (8) taken at the instant ζj+1.

The proof of Lemma 2 is given in the Appendix.

Lemmas 1 and 2 allow us to prove the main proposition of this work.

Theorem 1. The optimal filtering estimate θ̂t can be represented as

θ̂t = E {θt|Ot} =
∑
j�0

I[ζj ,ζj+1)(t)μt, (10)

where the functions μt are specified by the solution of (8) on the intervals [ζj, ζj+1). At the in-

stants ζj+1 of jumps of observations (ξt, ηt), the estimate θ̂j+1 = π̂j+1 is calculated using recurrence
relation (9); the filtering estimate at the initial instant is

θ̂0 = (Ξ(ξ0)π0)
−1 diag (Ξ(ξ0))π0. (11)
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The estimate θ̂t is the solution to the stochastic system

θ̂t = (Ξ(ξ0)π0)
−1 diag (Ξ(ξ0)) π0

+

t∫
ζj

[(
diag(Ξ(ξs))A

�−
K∑
k=1

diag(gk)

)
θ̂s− θ̂s

(
Ξ(ξs)A

�−
K∑
k=1

gk
)
θ̂s

]
ds

+
∑

ζj :ζj�t

[
K∑
k=1

(
gkθ̂ζj−

)−1
diag(gk)θ̂ζj−Δηkζj

+
(
Ξ(ξζj)A

�θ̂ζj−
)−1

diag
(
Ξ(ξζj)

) (
I − diag

(
Ξ(ξζj−)

))
A�θ̂ζj− − θ̂ζj−

]
.

(12)

Theorem 1 is proved in the Appendix.

Remark 1. Although the integral part of final equation (12) is nonlinear and corresponds to (8),
linear system (7) also plays an important role in the numerical implementation of the filtering
algorithm. Note that (8) represents a system of Riccati differential equations, numerical solution of
which may be difficult for some sets of parameters. The point is that the exact solution μ satisfies
the conditions of non-negativity and normalization, and the approximate solution must satisfy the
same conditions. Otherwise it loses the probabilistic sense of the conditional distribution, and the
approximation itself diverges. To neutralize this disadvantage, more complicated numerical solution
algorithms can be used or the time step can be reduced. In contrast to direct numerical solution
of (8), μt can be computed using (7) exactly for any value of the time step h. For this purpose, it is

sufficient to compute once the exponential Q = exp
[
h
(
diag(Ξ(ξj))A

� −∑K
k=1 diag(g

k)
)]

and the

sum of its rows q = 1Q. Then the exact values of the conditional distribution μζj+ih on a uniform
time grid with step h, starting at ζj , can be calculated by the simple recurrence

μζj+(i+1)h =
1

qμζj+ih
Qμζj+ih, i ∈ N.

4. NUMERICAL EXAMPLE OF AVAILABLE BANDWIDTH ESTIMATION

We present the channel structure and the structure of information transmitted through it in
more detail. Figure 1 shows the channel operating scheme.

Fig. 1. Scheme of operation of the network channel.
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Data in the form of packets arrive in the channel from two independent flows. The first flow—the
simplest one with the intensity μ—is partially observable. The second, completely unobservable,
is described by a Cox process with the intensity κt taking values from the set {κs}s=1,S and
varies according to a hidden homogeneous MJP with the known transition intensity matrix Λ =
‖Λij‖ij=1,S. In fact, the second flow is an external integral non-stationary load.

A transmission channel is a service element that can simultaneously contain no more than
Np transmitted packets. Packets arriving in a completely occupied channel are lost. When the
channel is not empty, it transmits a packet, spending a random time on it that has an exponential
distribution with the constant parameter ν. The transmitted packet is chosen randomly from
packets of both flows—if there are q′ packets of the first flow and q′′ packets of the second flow in
the channel at the given instant, then the probabilities that a packet from the first or the second
flow will be transmitted are q′

q′+q′′ and
q′′

q′+q′′ , respectively. Thus, the considered model implements
the Active Queueing Management mechanism [19], which provides different flows with fair access
to resources in proportion to the number of packets of each flow that are in the channel.

Obviously, the current channel bandwidth is determined by two variables hidden from direct
observation, viz. The amount of packets in the server qΣt � q′t + q′′t and the total packet arrival
intensity from the two flows κΣ

t � μ+ κt. These two processes are being monitored.

The arrival processes of packets of both flows into the channel and their processing are described
by a unified MJP with a finite set of states θt = (st, q

′
t, q

′′
t ), where st is the current state of the second

flow (s = 1, S), q′t is the number of packets of the first flow in the server, and q′′t is the number of
packets of the second flow in the server (0 � q′, q′′ : q′t + q′′t � Np). One can easily check that the

total number of possible MJP states is N = S(Np+1)(Np+2)
2 .

The matrix A of MJP transition intensities Xt is defined element by element as follows:

— (i, q′, q′′)
Λij

−−→ (j, q′, q′′), (i, j = 1, S, i �= j, q′, q′′ � 0 : q′ + q′′ � Np) — change of intensity
of the second flow from κ

i to κ
i;

— (s, q′, q′′)
μ−→ (s, q′ + 1, q′′), (s = 1, S, q′, q′′ � 0 : q′ + q′′ � Np − 1) — arrival of a new packet

of the first flow into the channel;

— (s, q′, q′′)
κs

−→ (s, q′, q′′ + 1), (s = 1, S, q′, q′′ � 0 : q′ + q′′ � Np − 1) — arrival of a new packet
of the second flow into the channel;

— (s, q′, q′′)
q′

q′+q′′ ν−−−−→ (s, q′ − 1, q′′), (s = 1, S, q′ > 0, q′′ � 0 : q′ + q′′ � Np) — transmission of
the first flow packet through the channel;

— (s, q′, q′′)
q′′

q′+q′′ ν−−−−→ (s, q′, q′′ − 1), (s = 1, S, q′ � 0, q′′ > 0 : q′ + q′′ � Np) — transmission of
the second flow packet through the channel.

To estimate the characteristics qΣt and κ
Σ
t , one can use the following statistical information:

— continuous observations of the number of packets of the first flow currently in the channel:
ξt = q′t,

— the process that counts packet losses of the first flow caused by channel overflow: ηt =∫ t
0 I{Np}(q

Σ
u )μdu+Mη

t .

We performed numerical experiments for the following parameter values: Np = 32, S = 3,
N = 1683, μ = 1, ν = 13, T = 2000,

Λ =

⎡⎢⎣−0.002 0.001 0.001
0.001 −0.002 0.001
0.001 0.001 −0.002

⎤⎥⎦ , κ =

⎡⎢⎣ 1
5
11

⎤⎥⎦ .
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Fig. 2. Evolution of channel load and available observations.

The initial distribution of the MJP describing packet transmission coincides with a stationary one.
Simulation of all processes and search for the numerical solution to the optimal filtering problem
was performed with the time step h = 0.01.

Figure 2 gives information about the hidden state of the channel and available observations:

— the hidden intensity state of the second flow κt (displayed as the background filling),
— the hidden channel load qΣt ,
— the observed number of packets of the first flow ξt that are in the channel,
— the observable counting process of packet losses of the first flow ηt (the values are displayed

on the right ordinate axis).

The MJP state filtering estimate θ̂t obtained by solving (12) is a vector whose components are
conditional probabilities P {st = S, q′t = Q′, q′′t = Q′′|Ot}. Using the vector θ̂t, we can calculate the
estimates of the current total channel load q̂ Σ

t :

q̂ Σ
t =

∑
s,q′,q′′

(q′ + q′′)P
{
st = s, q′t = q′, q′′t = q′′|Ot

}
, (13)

and the estimates κ̂
Σ
t of the current total intensity of the packets arriving in the channel:

κ̂
Σ
t =

∑
s,q′,q′′

κ
sP
{
st = s, q′t = q′, q′′t = q′′|Ot

}
. (14)

These characteristics, in turn, allow for real-time ABW estimation under different QoS condi-
tions. We consider the channel operating with the assumption that the second flow is also simple
with the constant intensity κ. Depending on this parameter, we calculate the average number of

packets in the channel E
{
qΣ
}
= E(κ) and the probability P

{
qΣ = Np

}
= P(κ) of the packet loss

in the stationary mode. Figure 3 shows the dependences E(κ) and P(κ) (on the auxiliary ordinate
axis).

Suppose that the QoS requirement is fixed in the form of an upper bound for the packet loss
probability P. We assume that the maximum bandwidth of this channel B equals the total intensity
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Fig. 3. Average number E(κ) of the packets in the channel and probability of packet loss P (κ).

of both flows, provided that the packet loss probability does not exceed P : B � P−1(P) + μ.
For example, if we choose P = 0.05 the respective maximum bandwidth is B = 12.45. Then, we
propose to take the difference Ba

t � B − κ
Σ
t , i.e., such a maximum addition to the current intensity

of the second flow that does not violate the packet loss probability constraint, as the ABW at the
instant t. However, the variable κ

Σ
t cannot be observed directly, so we propose to use the variable

B̂a
t � max(B − κ̂

Σ
t , 0), which is a function of the obtained estimate κ̂

Σ
t , as an ABW estimate.

We consider another type of QoS requirement in the form of an upper bound T for the average
packet transmission time. If a packet is currently on the server with the current total number
of packets qΣt and the channel is in the stationary mode, the average transmission time can be

characterized by
qΣt
ν . Thus, for this QoS requirement to be met, the maximum allowable number of

packets being simultaneously at the server should not exceed Q = Tν. For example, if we choose
T = 1 the upper value Q = 13 and the respective maximum bandwidth is B = E−1(13) = 11.55.
As an ABW estimate, we propose to use the variable B̂a

t � max(B − E−1(q̂Σt ), 0) which is a function
of the obtained estimate q̂Σt .

Figure 4 shows the evolution of the channel load and its estimate:

— the hidden intensity state of the second flow κt (displayed as the background filling),

— the total hidden channel load qΣt ,

— the estimate of the total channel load q̂Σt ,

— the observed number of packets of the first flow ξt that are in the channel.

The upper graph shows the trajectories over the entire estimation interval [0; 2000], the lower
one shows the interval [450; 650]. Note that a more detailed graph shows the piecewise continuous
nature of the estimate: a continuous trajectory on the intervals of no jumps in observations and its
jump change corresponding to a jump in observations. The registration of packet loss of the first
flow unambiguously signals that the channel is full at the moment, i.e., qΣt = Np. The presented
filtering estimate behaves in full accordance with this conclusion—at the instant t = 485.91, there
is a packet loss, and the estimate q̂Σt coincides with the real channel load qΣt , which is Np, at this
instant.
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Fig. 4. Channel load and its estimate.

Fig. 5. Total packet arrival intensity and its estimate.

Figure 5 shows the evolution of the total packet arrival intensity in the channel and its estimate:

— the hidden intensity state of the second flow κt (displayed as the background filling),

— the packet arrival intensity κ
Σ
t ,

— the intensity estimate κ̂
Σ
t .

The upper graph shows the trajectories over the entire estimation interval [0; 2000], the lower
one shows the interval [450; 650]. Note that the more detailed graph also shows the piecewise
continuous nature of the estimate.

Analyzing the graphs, we can conclude that the proposed estimates of the current characteristics
of the channel bandwidth have high accuracy. We compare it with the accuracy of the trivial
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estimation, viz. unconditional mathematical expectation of the processes qΣt and κ
Σ
t calculated for

the MJP stationary distribution X. The accuracy of the trivial estimates E
{
qΣ
}
and E

{
κ
Σ
}
is

characterized by the variances D{qΣ} and D{κΣ}. As accuracy metrics for the proposed estimates
we employ the following indices

εq = 1−

T∫
0
E
{
(q̂Σt − qΣt )

2dt
}

TD{qΣ} and εκ = 1−

T∫
0
E
{
(κ̂Σ

t − κ
Σ
t )

2dt
}

TD{κΣ} ,

which can be considered as analogues of the determination coefficients accepted in mathematical
statistics [20]. In this example, the numerators of both indicators are obtained by the Monte Carlo
method using a bundle of trajectories NMC = 10000: εq = 0.76 and εκ = 0.94.

5. CONCLUSIONS

In this work, we study the applied problem of real-time ABW estimation for a packet transmis-
sion channel using observations of one of the data flows served. The available observations include
information on the number of packets of the flow currently in it, as well as the counting process of
the packet losses. Since the proposed estimation procedure does not need to generate additional ser-
vice flows through the channel that drain its resources, the proposed monitoring algorithm belongs
to the passive class.

The principal idea that allowed us to construct an efficient numerical estimation algorithm is
to use a partially observable MJP to describe the channel operating and incoming flows. The
statistical information includes a set of some state functions observed without noise and counting
processes whose intensity depends on the estimated state. The obtained filtering estimate is given
by a sequence of recurrently connected ordinary differential equations calculated in the intervals
between jumps of observations and discrete transformations that update the estimates at instants
of changes in the observations. The work gives numerical experimental results illustrating the high
quality of the presented estimates.

The research in the field of constructing efficient algorithms for ABW channel estimation can be
continued in the following directions. First, it is of practical interest to solve the ABW estimation
problem for an exponential element with a limited queue for the case of the non-stationary flow of
incoming packets described here.

Second, it is important for telecommunication applications to complicate the model of channel
and incoming flow operating by switching from Markov to semi-Markov processes.

Third, the ABW estimation problem was solved under conditions of full a priori information
about the channel and flows transmitted through it. The construction of procedures for adaptive
estimation of probabilistic parameters of the “channel-flows” pair and robust upgrading of the
proposed monitoring algorithm also seems promising.

Fourth, the available statistical information in real data transmission networks is much richer
than that used in this paper. For example, there are data linking the packet flows at the channel
input and output, there is information about the individual transmission time of each packet, and
so on. All this information included in the observation system may cause the extended stochastic
observation system to cease to be Markov, which radically complicates the ABW estimation algo-
rithms. Therefore, it seems promising to extend the class of observation systems in a way that,
on the one hand, preserves the Markov property of the suitably extended system state and, on the
other hand, allows us to use some of the additional statistical information similarly to [21, 22].

Fifth, using MJP with a finite set of states to solve applied problems involves very serious
complexity. It consists of the rapid growth of the MJP dimension. Indeed, even in the considered
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numerical example with the channel capacity K = 3 and three possible variants of external load,
the total number of MJP states is 48. We should also take into account that different states
are described by vectors of dimension 3 rather than by scalar values, which leads to an additional
increase in the amount of RAM required to implement the filtering algorithm. These circumstances
make it topical to develop special efficient software that implements the estimation algorithms in
stochastic observation systems with MJP.

FUNDING

The research was supported by the Ministry of Science and Higher Education of the Russian
Federation, project No. 075-15-2024-544.

The research was carried out using the infrastructure of the Shared Research Facilities “High
Performance Computing and Big Data” (CKP “Informatics”) of the Federal Research Center “Com-
puter Science and Control” of the Russian Academy of Sciences.

APPENDIX

Proof of Lemma 1. To derive systems (7) and (8), we use the method of moments—we construct
closed linear stochastic differential systems describing the evolution of the state up to the next
observation jump and average them.

If {ζη,k }∈Z+, k=1,K are the jump instants of the components of the counting observations η,

and {ζξ }∈Z+ are the jump instants of the perfect observations ξ, the instant ζj+1 following ζj is
determined using an obvious recurrence

ζj+1 = min
ζη,k
�

>ζj , ζ
ξ

�′>ζj

(ζη,k , ζξ′).

On the interval [ζj ,+∞) we study the process

Ut � I[ζj ,ζj+1)(t) = I
[ζj ,ζ

ξ

�′)
(t)︸ ︷︷ ︸

�Vt

K∏
k=1

I
[ζj ,ζ

η,k
�

)
(t)︸ ︷︷ ︸

�W k
t

.

By construction, on any interval [ζj, t) processes Vt and W k
t experience no more than one jump,

and the relations hold

diag(Ξ(ξj))θt ≡ θζj for ∀ t ∈ [ζj , ζ
ξ
′), diag(Ξ(ξj))θζξ

�′
= 0.

By the Doleans formula [23] the processes Vt and W k
t can be represented as solutions of the

equations

Vt = I[ζj ,+∞)(t)

⎛⎜⎝1 +

t∫
ζj

Vs−Ξ(ξj)dθs

⎞⎟⎠ , (A.1)

W k
t = I[ζj ,+∞)(t)

⎛⎜⎝1−
t∫

ζj

W k
s−dη

k
s

⎞⎟⎠ . (A.2)
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Indeed, the process
∫ t
ζj
Ξ(ξj)dθs is a purely discontinuous semimartingale, and the solution of

equation (A.1) by the Doleans formula has the form

Vt = I[ζj ,+∞)(t) exp
[
Ξ(ξj)(θt − θζj)

] ∏
s: ζj<s�t

(
1 + Ξ(ξj)Δθs

)
. (A.3)

If the process θ did not have any jumps prior to the instant t, then Vt = Vζj = 1. If at time
s > ζj the first jump of θ occurred that did not lead to any jump of observations ξ, i.e., Δξs = 0,
then

Ξ(ξj)(θs − θs−) = Ξ(ξj)(θs − θζj) = 0,

and according to (A.3) Vs = 1. The process V will preserve the same value during subsequent jumps
of θ that do not lead to jumps of observations ξ. If at time s > ζj the first jump of θ occurred that

led to a jump of observations ξ, i.e., ξs �= ξs− = ξj and s = min
ζξ
�′>ζj

ζξ′ , then

Ξ(ξj)(θs − θs−) = Ξ(ξj)θs − Ξ(ξj)θs− = 0− 1 = −1,

and according to (A.3) Vs = 0. The process Vt will further preserve the same value. Thus, we
showed that the solution of equation (A.1)—process (A.3)—coincides with the process I

[ζj ,ζ
ξ

�′)
(t) on

the ray [ζj,+∞). We can similarly prove that the processes W k
t = I

[ζj ,ζ
η,k
�

)
(t) can be represented

as the solution to Eq. (A.2).

Further, from (1)–(3) it follows that Vt and W k
t can be expanded as follows:

Vt = I[ζj ,+∞)(t)

⎛⎜⎝1 +

t∫
ζj

Ξ(ξj)A
� θsVs︸︷︷︸

�vs

ds +M1
t

⎞⎟⎠ , (A.4)

W k
t = I[ζj ,+∞)(t)

⎛⎜⎜⎝1−
t∫

ζj

gk θsW
k
s︸ ︷︷ ︸

�wk
s

ds +M2,k
t

⎞⎟⎟⎠ , (A.5)

where I[ζj,+∞)(t)M
1
t and I[ζj ,+∞)(t)M

2,k
t are some martingales. Note that (A.4) and (A.5) can be

interpreted as linear stochastic differential equations with martingales in their right-hand sides.
Nevertheless these equations are not closed: the right-hand side of the equation for Vt contains the
process vt, and the right-hand side of W k

t includes wk
t . From (A.4) and (A.5) we obtain a closed

system of linear stochastic differential equations for the vector process ut � θtUt.

By Ito’s rule and condition (B) the process Ut admits the expansion

Ut = I[ζj ,+∞)(t)

⎡⎢⎣1 + t∫
ζj

⎛⎝dVs

K∏
k=1

W k
s− + Vs−

K∑
k=1

∏
i: i �=k

W i
s−dW

k
s

⎞⎠
⎤⎥⎦

= I[ζj ,+∞)(t)

⎡⎢⎣1 + t∫
ζj

(
Ξ(ξj)A

� −
K∑
k=1

gk
)
usds+M3

t

⎤⎥⎦ ,
where I[ζj ,+∞)(t)M

3
t is some martingale. From the definition of processes θ and U it follows that

∑
ζ: ζj<ζ�t

ΔθζΔUζ = −I[ζj,+∞)(t)

t∫
ζj

[
θs−dVs

K∏
k=1

W k
s− − (I − diag(Ξ(ξj)))dθsVs−

K∏
k=1

W k
s−

]
,
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therefore

ut = I[ζj ,+∞)(t)

⎡⎢⎣θζj +
t∫

ζj

(dθsUs− + θs−dUs) +
∑

ζ: ζj<ζ�t

ΔθζΔUζ

⎤⎥⎦
= I[ζj ,+∞)(t)

⎡⎢⎣θζj +
t∫

ζj

(
diag(Ξ(ξj))A

� −
K∑
k=1

diag(gk)

)
usds+M4

t

⎤⎥⎦ ,

(A.6)

where I[ζj ,+∞)(t)M
4
t is some martingale. Calculating CME of both parts of (A.6) with respect

to Oj and using the fact that

E
{
I[ζj ,+∞)(t)M

4
t |Oj

}
= E

{
E
{
I[ζj ,+∞)(t)M

4
t |Fζj

}
|Oj

}
= 0,

we obtain a system of equations equivalent to (7):

mt = π̂j +

t∫
ζj

(
diag(Ξ(ξj))A

� −
K∑
k=1

diag(gk)

)
msds.

The fact that the function can be represented as a solution to (8) follows from the chain rule of
function (6) and system (7).

Suppose A ∈ Oj is an arbitrary set and A′ = A ∩ {ω : ζj+1 > t}. The CME properties lead to
the following sequence of equalities being true

E
{
I[ζj,+∞)(t) (θtIA′(ω)− μtIA′(ω))

}
= E

{
θtI[ζj,ζj+1)(t)IA(ω)− μtI[ζj ,ζj+1)(t)IA(ω)

}
= E

{
E
{
θtI[ζj ,ζj+1)(t)IA(ω)− μtI[ζj ,ζj+1)(t)IA(ω)

}
|Oj

}
= E

{(
E
{
θtI[ζj ,ζj+1)(t)|Oj

}
− μtE

{
I[ζj ,ζj+1)(t)|Oj

})
IA(ω)

}
= E {(mt − 1mtμt)IA(ω)} = 0,

as well as equality (5). Lemma 1 is proved.

Proof of Lemma 2. The sequence {(ζj , θj, ξj, ηj)}j∈Z+ is Markov. We construct the elements
of its transition kernel.

The processes θt(η
k
t − ηkj )I[ζj ,+∞)(t) can be expanded as

θt(η
k
t −ηkj )I[ζj ,+∞)(t) = I[ζj ,+∞)(t)

⎡⎢⎣ t∫
ζj

(
A�θs(η

k
s −ηkj )+diag(gk)θs

)
ds+M5

t

⎤⎥⎦ ,
where I[ζj ,+∞)(t)M

5
t is some martingale. On the other hand,

θt(η
k
t − ηkj )I[ζj ,+∞)(t) = θt (η

k
t − ηkj )I[ζj ,ζj+1)(t)︸ ︷︷ ︸

=0

+θt(η
k
t − ηkj )I[ζj+1,+∞)(t).
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From the last two equalities it follows that

θt∧ζj+1
(ηkt∧ζj+1

− ηkj )I[ζj ,+∞)(t ∧ ζj+1)

= θt∧ζj+1
(ηkt∧ζj+1

− ηkj )I[ζj+1,+∞)(t ∧ ζj+1)

= θj+1(η
k
j+1 − ηkj )I[ζj+1,+∞)(t)

= I[ζj ,+∞)(t)

⎡⎢⎣ t∫
ζj

⎛⎜⎝A� us(η
k
s − ηkj )︸ ︷︷ ︸
=0

+diag(gk)us

⎞⎟⎠ ds+M5
t∧ζj+1

⎤⎥⎦ .
Calculating the CME with respect to Oj of the left and right parts of the last equality and using
the optional stopping theorem of the right-continuous martingale, we obtain that

E
{
θj+1(η

k
j+1 − ηkj )I[ζj+1,+∞)(t)|Oj

}
= E

{
θj+1I{1}(η

k
j+1 − ηkj )I[ζj+1,+∞)(t)|Oj

}
= I[ζj ,+∞)(t)

t∫
ζj

diag(gk)msds = I[ζj ,+∞)(t)

t∫
ζj

diag(gk)μs(1ms)ds.

The considered transition corresponds to a jump of the component ηk, i.e. ζj+1 = ζη,k . Now
consider the case when the transition is generated by a jump of observations ξ, i.e. when ξj+1 �= ξj
and ζj+1 = ζξ . Let c ∈ C (one of the possible values of observation ξ) be some column of matrix C.
Note that

diag(c)
(
I − diag(Ξ(ξj))

)
θj+1 =

{
0, if ξj+1 = ξj,

θj+1, if ξj+1 �= ξj .

The process diag(c)
(
I − diag(Ξ(ξj))

)
θtI[ζj,+∞)(t) can be represented as

diag(c)
(
I − diag(Ξ(ξj))

)
θtI[ζj ,+∞)(t)

= diag(c)
(
I − diag(Ξ(ξj))

) ⎡⎢⎣ t∫
ζj

A�θsds+M6
t

⎤⎥⎦ I[ζj ,+∞)(t),

where I[ζj ,+∞)(t)M
6
t is some martingale. On the other hand,

diag(c)
(
I − diag(Ξ(ξj))

)
θtI[ζj ,+∞)(t)

= diag(c)
(
I − diag(Ξ(ξj))

)
θtI[ζj ,ζj+1)(t)︸ ︷︷ ︸

=0

+ diag(c)
(
I − diag(Ξ(ξj))

)
θtI[ζj+1,+∞)(t).

From the last two equalities it follows that

diag(c)
(
I − diag(Ξ(ξj))

)
θt∧ζj+1

I[ζj ,+∞)(t ∧ ζj+1)

= diag(c)
(
I − diag(Ξ(ξj))

)
θt∧ζj+1

I[ζj+1,+∞)(t ∧ ζj+1)
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= diag(c)
(
I − diag(Ξ(ξj))

)
θj+1I[ζj+1,+∞)(t)

= diag(c)
(
I − diag(Ξ(ξj))

)⎡⎢⎣ t∫
ζj

A�usds+M6
t∧ζj+1

⎤⎥⎦ I[ζj ,+∞)(t).

Again calculating the CME with respect to Oj of the left and right parts of the equality and using
the optional stopping theorem of the martingale, we obtain

E
{
diag(c)

(
I − diag(Ξ(ξj))

)
θj+1I[ζj+1,+∞)(t)|Oj

}
= E

{
θj+1I{c}(ξj+1)

(
1− I{ξj}

(ξj+1)
)
I[ζj+1,+∞)(t)|Oj

}
= I[ζj ,+∞)(t)

t∫
ζj

diag(c)
(
I − diag(Ξ(ξj))

)
A�msds

= I[ζj ,+∞)(t)

t∫
ζj

diag(c)
(
I − diag(Ξ(ξj))

)
A�μs(1ms)ds.

Thus,

P
{
θj+1 = ei, ξj+1 = c, ξj+1 �= ξj , ζj+1 ∈ [t, t+ dt)|Oj

}
= e�i diag(c)

(
I − diag(Ξ(ξj))

)
A�μt(1mt)dt

(A.7)

and

P
{
θj+1 = ei, ξj+1 = ξj, η

k
j+1 − ηkj = 1, ζj+1 ∈ [t, t+ dt)|Oj

}
= e�i diag(g

k)μt(1mt)dt.
(A.8)

Further, we use a technique standard for deriving the equations of optimal state filtering of
Markov observation systems with discrete time [24, 25]. Let (α, β, γ) be a block random vector,
P (A,B|γ) be the conditional distribution of the pair (α, β) with respect to γ, i.e.

P {α ∈ A, β ∈ B|γ} = P (A,B|γ) P− a.s.

Let there also exist a measure χ(a, b|γ) such that P � χ and ρ(a, b|γ) =
= dP

dχ (a, b|γ) be the corresponding Radon-Nikodym derivative. Then the CME E {α|β, γ} can be
computed using the following variant of Bayes formula:

E {α|β, γ} =

(∫
ρ(a′, β|γ)dχ(a′, β|γ)

)−1 ∫
aρ(a, β|γ)dχ(a, β|γ). (A.9)

Formula (9) is a special case of (A.9) obtained by substituting (A.7) and (A.8) into it. Lemma 2
is proved.

Proof of Theorem 1. By direct substitution, we can check that the estimate θ̂t, “glued” from
solutions of systems (8) with jumps described by (9) and initial condition (11), is a solution of (12).
Therefore, to prove the theorem it is sufficient to check the truth of equality (10).

The observable process (ξt, ηt) represents a multivariate point process (MPP) with state space
B � C ×Z

K
+ , which can be represented in the equivalent form of stochastic measure φ [18], defined

on the measurable space ([0, T ]×B,B([0, T ]) × 2B):

φ(ω, dt, dy1, dy2) =
∑
j∈Z+

δ(ζj (ω),ξj(ω),ηj(ω))
(dt, dy1, dy2).
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In [18] it was proved that the natural flow of σ-algebras generated by observations coincides with
the one generated by the stochastic measure, i.e.

σ
{
φ([a, b)× {c} × {z}) : [a, b) ∈ B([0, T ]), c ∈ C, z ∈ Z

K
+

}
≡ Ot, t ∈ [0, T ].

The base of the σ-algebra B([0, T ]) × 2B consists of sets of the form [a, b) × {c} × {z}, so by
virtue of the theorem on monotone classes [23] to prove the truth of equality (10) it is sufficient to
check the validity of equality

E

⎧⎨⎩
⎛⎝∑

j�0

I[ζj ,ζj+1)(t)μt − θt

⎞⎠φ([a, b) × {c} × {z})

⎫⎬⎭ ≡ 0

for all sets [a, b)× {c} × {z} of the base.

From the properties of CME and (4)–(6) follows the sequence of equalities

E

⎧⎨⎩
⎛⎝∑

j�0

I[ζj ,ζj+1)(t)μt − θt

⎞⎠φ([a, b) × {c} × {z})

⎫⎬⎭
= E

⎧⎨⎩∑
j�0

I[ζj ,ζj+1)(t) (μt − θt) I[a,b)(t)
∑
�0

I[ζ�,ζ�+1)(t)I{c}(ξ)I{z}(η)

⎫⎬⎭
= I[a,b)(t)

∑
j�0

E
{
I[ζj ,ζj+1)(t) (μt − θt) I{c}(ξj)I{z}(ηj)

}
= I[a,b)(t)

∑
j�0

E
{
E
{
I[ζj ,ζj+1)(t) (μt − θt) I{c}(ξj)I{z}(ηj)|Oj

}}

= I[a,b)(t)
∑
j�0

E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝I[ζj ,+∞)(t)E
{
I[ζj ,ζj+1)(t)|Oj

}
︸ ︷︷ ︸

=I[ζj ,+∞)(t)1mt

μt

− I[ζj ,+∞)(t)E
{
θtI[ζj ,ζj+1)(t)|Oj

}
︸ ︷︷ ︸

=I[ζj ,+∞)(t)mt

⎞⎟⎟⎟⎟⎠ I{c}(ξj)I{z}(ηj)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = 0.

Theorem 1 is proved.
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